Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2025
-
Sparrow, David (Ed.)Odonata comprise approximately 6400 species with extensive morphological and ecological diversity, specifically their colour variation, flight behaviour patterns, and breadth of ecological niches. Additionally, their phylogenetic placement within Insecta as descendants of the first winged insects make them ideal candidates for exploring evolutionary forces that have shaped diversity patterns (e.g., diversification rate shifts) as well as character evolution (e.g., flight behaviour, colour). Even though morphological and ecological traits are relatively well known for most of odonate taxa, the lack of well-supported phylogenetic hypothesis across Odonata have limited the capability of evaluating evolutionary phenomena in a comparative context. Previous studies using various taxon sampling schemes and data types (i.e. morphology, targeted locus approaches) to reconstruct odonate relationships failed to resolve several interfamilial relationships, specifically in groups with likely incomplete lineage sorting and/or introgression. Even though a recent study by Bybee et al. (2021) incorporated genomic-scale anchored hybrid enrichment (AHE) data for phylogenetic reconstruction, the relatively limited taxon sampling likely precluded resolution within the problematic groups. Our study, also targeting AHE loci, greatly expand taxon odonate genera, which resulted in 729 newly generated samples in a addition to 142 samples from Bybee et al. (2021) for a total of 831. With around 500 AHE loci, we aim to resolve historically difficult relationships and construct a robust ordinal phylogeny of Odonata, which will be used as the evolutionary framework to clarify taxonomic classifications and test evolutionary hypotheses regarding shifts in flight behaviours, colours, and diversification rates.more » « less
-
Planetary extinction of biodiversity underscores the need for taxonomy. Here, we scrutinize spider taxonomy over the last decade (2008–2018), compiling 2083 published accounts of newly described species. We evaluated what type of data were used to delineate species, whether data were made freely available, whether an explicit species hypothesis was stated, what types of media were used, the sample sizes, and the degree to which species constructs were integrative. The findings we report reveal that taxonomy remains largely descriptive, not integrative, and provides no explicit conceptual framework. Less than 4% of accounts explicitly stated a species concept and over one-third of all new species described were based on 1–2 specimens or only one sex. Only ~5% of studies made data freely available, and only ~14% of all newly described species employed more than one line of evidence, with molecular data used in ~6% of the studies. These same trends have been discovered in other animal groups, and therefore we find it logical that taxonomists face an uphill challenge when justifying the scientific rigor of their field and securing the needed resources. To move taxonomy forward, we make recommendations that, if implemented, will enhance its rigor, repeatability, and scientific standards.more » « less
-
Abstract Species delimitation is an imperative first step toward understanding Earth's biodiversity, yet what constitutes a species and the relative importance of the various processes by which new species arise continue to be debatable. Species delimitation in spiders has traditionally used morphological characters; however, certain mygalomorph spiders exhibit morphological homogeneity despite long periods of population‐level isolation, absence of gene flow, and consequent high degrees of molecular divergence. Studies have shown strong geographic structuring and significant genetic divergence among several species complexes within the trapdoor spider genusAptostichus, most of which are restricted to the California Floristic Province (CAFP) biodiversity hotspot. Specifically, theAptostichus icenogleicomplex, which comprises the three sibling species,A. barackobamai,A. isabella, andA. icenoglei, exhibits evidence of cryptic mitochondrial DNA diversity throughout their ranges in Northern, Central, and Southern California. Our study aimed to explicitly test species hypotheses within this assemblage by implementing a cohesion species‐based approach. We used genomic‐scale data (ultraconserved elements, UCEs) to first evaluate genetic exchangeability and then assessed ecological interchangeability of genetic lineages. Biogeographical analysis was used to assess the likelihood of dispersal versus vicariance events that may have influenced speciation pattern and process across the CAFP's complex geologic and topographic landscape. Considering the lack of congruence across data types and analyses, we take a more conservative approach by retaining species boundaries withinA. icenoglei.more » « less
An official website of the United States government
